Technology for clinical research in speech-language pathology

Tara McAllister Byun

NYU Steinhardt School of Culture, Education, and Human Development Department of Communicative Sciences & Disorders

► From the website of the American Speech-Language-Hearing Association:

- ► From the website of the American Speech-Language-Hearing Association:
- ▶ Between 6 and 8 million people in the US have some form of language impairment.

- ► From the website of the American Speech-Language-Hearing Association:
- Between 6 and 8 million people in the US have some form of language impairment.
- ▶ About 1 million people in the US have aphasia (loss of language following stroke/brain injury).

- ► From the website of the American Speech-Language-Hearing Association:
- ▶ Between 6 and 8 million people in the US have some form of language impairment.
- ▶ About 1 million people in the US have aphasia (loss of language following stroke/brain injury).
- More than 3 million Americans stutter.

- ► From the website of the American Speech-Language-Hearing Association:
- ▶ Between 6 and 8 million people in the US have some form of language impairment.
- ▶ About 1 million people in the US have aphasia (loss of language following stroke/brain injury).
- More than 3 million Americans stutter.
- Roughly 9% of preschool and school-aged children have a disorder of speech sound production.

▶ In the school setting:

- ▶ In the school setting:
- ▶ Diagnosis and treatment of children with

- ▶ In the school setting:
- ▶ Diagnosis and treatment of children with
 - ► Speech production problems

- ▶ In the school setting:
- Diagnosis and treatment of children with
 - Speech production problems
 - ► Delayed/disordered language development

- ▶ In the school setting:
- Diagnosis and treatment of children with
 - ► Speech production problems
 - ► Delayed/disordered language development
 - Dyslexia

- ▶ In the school setting:
- Diagnosis and treatment of children with
 - ► Speech production problems
 - Delayed/disordered language development
 - Dyslexia
 - Autism Spectrum Disorder

► In the hospital setting:

- ▶ In the hospital setting:
- Evaluation and treatment of language and cognitive impairment in individuals with aphasia or traumatic brain injury

- ▶ In the hospital setting:
- Evaluation and treatment of language and cognitive impairment in individuals with aphasia or traumatic brain injury
- Evaluation and management of dysphagia (swallowing disorders)

Accent modification

- Accent modification
- Diagnosis and management of voice disorders

- Accent modification
- Diagnosis and management of voice disorders

MGH Voice Lab

Where does tech fit in?

► The intersection of technology and health is an area of tremendous growth in research and industry.

Where does tech fit in?

- The intersection of technology and health is an area of tremendous growth in research and industry.
- ▶ Need innovative practices to address communication disorders like autism, reading disability, language loss due to stroke.

Where does tech fit in?

- ► The intersection of technology and health is an area of tremendous growth in research and industry.
- ▶ Need innovative practices to address communication disorders like autism, reading disability, language loss due to stroke.

Google's High-Tech Spoon Could Help People With Parkinson's

As Retures' Alexel Oreskovic points out, Google has beentaking a greater interest in health technology lately, and tilt will be joining a growing Uife Sciences group within the company. That group, profiled recently in the Wall Street Journal, is working on a "smart contact lens" that monitors glucose levels for diabetics. Google also led a \$100 million investment earlier this year in a startup that produces cancer treatment software. Google Hangouts receive sign language interpreter support, keyboard shortcuts

Byun Lab research

If children or adults want to change the way they speak, how can we help them make a rapid and lasting change?

Byun Lab research

- If children or adults want to change the way they speak, how can we help them make a rapid and lasting change?
- Measure how speakers learn under different practice conditions.

Byun Lab research

- If children or adults want to change the way they speak, how can we help them make a rapid and lasting change?
- Measure how speakers learn under different practice conditions.
- Focus is on how speech changes when the learner receives enhanced feedback (acoustic, ultrasound).

Certain sound contrasts are signaled by different patterns of formants (resonant frequencies of the vocal tract).

- Certain sound contrasts are signaled by different patterns of formants (resonant frequencies of the vocal tract).
- ▶ Display real-time LPC spectrum of speech.

- Certain sound contrasts are signaled by different patterns of formants (resonant frequencies of the vocal tract).
- ▶ Display real-time LPC spectrum of speech.
- ▶ Compare to template representing correct production.

- Certain sound contrasts are signaled by different patterns of formants (resonant frequencies of the vocal tract).
- ▶ Display real-time LPC spectrum of speech.
- ▶ Compare to template representing correct production.
- ► The learner modifies his/her output in an effort to make the formants line up with the target.

biofeedback.png

Ultrasound biofeedback intervention

Ultrasound imaging for speech

Figure 2: Ultrasound tongue imaging (Bernhardt, Gick, Bacsfalvi, & Ashdown, 2003)

Ultrasound biofeedback intervention

- Ultrasound imaging for speech
- ► Ultrasound biofeedback intervention: Show learner a model of a correct tongue shape for target sound (e.g. /ɹ/).

Figure 2: Ultrasound tongue imaging (Bernhardt, Gick, Bacsfalvi, & Ashdown, 2003)

Ultrasound biofeedback intervention

- Ultrasound imaging for speech
- ► Ultrasound biofeedback intervention: Show learner a model of a correct tongue shape for target sound (e.g. /ɹ/).
- ► Learner views shape and movements of own tongue in real-time; attempts to match the model shape.

Figure 2: Ultrasound tongue imaging (Bernhardt, Gick, Bacsfalvi, & Ashdown, 2003)

Ultrasound biofeedback intervention

biofeedback.png

 CSL software costs \$2K (\$5K with hardware)out of reach for most SLPs.

- CSL software costs \$2K (\$5K with hardware)out of reach for most SLPs.
- Need a free, user-friendly app to be used by SLPs in school/clinic setting and by patients for home practice.

- CSL software costs \$2K (\$5K with hardware)out of reach for most SLPs.
- Need a free, user-friendly app to be used by SLPs in school/clinic setting and by patients for home practice.
- ▶ What do we get out of it?

- CSL software costs \$2K (\$5K with hardware)out of reach for most SLPs.
- Need a free, user-friendly app to be used by SLPs in school/clinic setting and by patients for home practice.
- ▶ What do we get out of it?
- ▶ Data, papers, real-world impact...

Initial team

 Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- ► Tae Hong Park, associate professor, Music Technology program

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- ► Tae Hong Park, associate professor, Music Technology program
- Jon Forsyth, PhD candidate in Music Technology

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- ► Tae Hong Park, associate professor, Music Technology program
- Jon Forsyth, PhD candidate in Music Technology

ABILITY Lab

▶ Tim Sanders

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- ► Tae Hong Park, associate professor, Music Technology program
- Jon Forsyth, PhD candidate in Music Technology

ABILITY Lab

- Tim Sanders
- Helen Carey

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- Tae Hong Park, associate professor, Music Technology program
- Jon Forsyth, PhD candidate in Music Technology

ABILITY Lab

- Tim Sanders
- Helen Carey
- Dalit Shalom

Initial team

- Mario Svirsky, professor/vice chair of research, NYU Langone Dept. of Otolaryngology
- Tae Hong Park, associate professor, Music Technology program
- Jon Forsyth, PhD candidate in Music Technology
- Heather Campbell, PhD candidate in CSD
- Wendy Liang, MS candidate in CSD

ABILITY Lab

- Tim Sanders
- Helen Carey
- Dalit Shalom
- Eddie Chen
- Hsuan Chang

STERT

BUT SPEECH LANGUAGE
PATHULIGISTS (SIR) FOR
A LUNGTIME AND STILL HAVE
TROUBLE...

SIP: HAVE TO DISMISS THEM
FROM THEIR CASELOADS.

WED,

RESEARCH IS SHOWING
1HAT BUFFEDBACK MAY
BE AN EFFECTIVE METHOD
FOR HELPING KIDS IMPROVE
THEIR /P/S OUND 99

N DIDYOU KNOW?

SHE R SOUND IS ONE
OF THE MOST PERSISTENTLY
DISTORTED SPEECH SOUNDS

CO-INVESTIGATORS:

 Develop core acoustic functionality (real-time LPC with peak detection)

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface
- Develop user modules

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface
- Develop user modules
 - Introduction

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface
- Develop user modules
 - Introduction
 - Structured practice

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface
- Develop user modules
 - Introduction
 - Structured practice
 - Performance tracking

- Develop core acoustic functionality (real-time LPC with peak detection)
- Add ability to set an acoustic target
- ▶ Program user interface
- Develop user modules
 - Introduction
 - Structured practice
 - Performance tracking
- Automated scoring

Current status

▶ Planned pilot testing:

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - ► SLP focus group

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - ► SLP focus group
- ► Planned efficacy study:

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - ▶ SLP focus group
- ► Planned efficacy study:
 - Recruit up to 12 SLPs who will agree to replace typical intervention with our app for 8 weeks

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - ► SLP focus group
- ► Planned efficacy study:
 - Recruit up to 12 SLPs who will agree to replace typical intervention with our app for 8 weeks
 - ▶ Probe /r/ accuracy before, during, after treatment

- ▶ Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - ► SLP focus group
- Planned efficacy study:
 - Recruit up to 12 SLPs who will agree to replace typical intervention with our app for 8 weeks
 - Probe /r/ accuracy before, during, after treatment
 - ▶ 10% of session records checked for fidelity to protocol

- Planned pilot testing:
 - Usability interviews with previous participants in lab-based study
 - SLP focus group
- Planned efficacy study:
 - Recruit up to 12 SLPs who will agree to replace typical intervention with our app for 8 weeks
 - Probe /r/ accuracy before, during, after treatment
 - ▶ 10% of session records checked for fidelity to protocol
 - ► Compare effect sizes of app-based versus lab-based treatment

Thank you!

Questions?

tara.byun@nyu.edu @ByunLab

Acknowledgments

This research was supported by NIH R03DC 012883, the New York University Challenge Research Fund, the Steinhardt Technology Award, and the ABILITY Lab.