Best Practices for Building Splunk Apps and
Technology Add-ons

Presented by: Jason Conger

Splunk, Inc. +1.415.568.4200(Main)

Spl u n k > 250 Brannan Street, 2nd Floor +1.415.869.3906 (Fax)

San Francisco, CA 94107 www.splunk.com

splunk>

Table of Contents

L0] a4 T 4
Creating a Directory Structure for Your Application or Add-on ... 4
Directory Naming Conventions for Your Application or Add-0n.......cmsn. 4
Getting Data INto SPIUNK ... 5
Best Practices for Reading Existing Log Files......ccmnsssssssssssssssssssssssssssssssssens 5
Best Practices for Logging Data to be consumed by SplunK.........ciinn. 6
Best Practices fOr EVENt BreaKiNg. ..ot sssssssessssssse s s ssssssss st sssssssesssssssasssssssesans 7
Scripted INput BeSt PractiCes ... s sssssssssssssssssssssssssssssssss s 9
Do not hard code Paths IN SCIIPLS ..t ee et ss s bbb 9
Use Splunk Entity Class or position files as a placeholder ... 9
Use error trapping and lOZGINEG ... eeereereererneereenessesseeseessessessesssesssssesssessssssssssssssssssssssssssssessssssessessssssessessessssssees 10

L 8 0T 0 L] o 10
Test Scripts USING SPIUNK CIMD ...t sieseseessesssesssessse s ss st sesssess s ssss st 11
Use configuration files t0 StOTe USET PrefErEIICES .uirereineeseeseeseesessesssesssesse st s sssessssssesssseees 11
Use Splunk methods to read cascaded SELHNEScoueeereeureerreemreeneeeiseessesess s sesssessssssse s ssesssseses 11
Use script methods to construct file Pathis..... et seees 12
MOAUIAT INPULS ..uctieieiciimsnsssnsssssssssssss s s s s s s s s e e sa R A AR e R AR R AR e R AR R AR AR R SRR AR E R R RERRR S 12
Modular INPUts VS. SCrIPLEA INPULS cueeieereeeceeseeseeeseiseeseeeeseseseessess s s sesssesssessss bbb s sss s sasesaes 12
Analyzing Data with SPIUDK ... 13
Dashboard and Form Best Practices ... 13
Splunk 6.x Dashboard EXamPIes ... sssssssssssssssssssssssssns 13
Search BeSt PractiCes ... st st ssssss st ssssssssesssssssasssnns 13
ParameteriZe INAEX NMAIMES. ... reeeereeseesseeseessesssessse s s s s ess s st s s ss s bR bbb e bbb a st 13
Use scheduled saved searches to build I0ORUP fileS ... sseeseeeees 14
Use TERM() t0 Search fOr [P AQAIESSES ...couuureenmeereesreesreesesssesssesssesssssssssssssssssssssesssasssesssssssesssessssssssssssasees 15
Knowledge ObDJECt SCOPE ..o sssss s s s s ss s ss s sms s ss s s s sesss s 15
Packaging Your App for Distribution ... 16
Important Information Regarding app.CONT .. e ssee st sess s sssssssssssssaes 16
Application Naming CONVENTIiONS.....uimsmsmsiiisssissssssssssssssssssssssssssss s sssssssssssssssssssssssssssssssssses 16
DefiNItIONS c.cucccitir s ————————————————————— 17
ReVISION HiSTOTY ..o s sss s s s sss s smssnsssassnssssnss 17
Appendix A - D0’S anNd DON'ES....imnminsssnsssnsssssmsssns 18
207 0) ot Y () o 18
Data COLIECLION .. 18
Packaging APPLICATIONS ..ot s e se s s 19

splunk>

Appendix B - Application/Add-on ChecKIist ... 20
Application Setup INSTFUCLIONS ... s 20
Application PacKaging ... ssssssssssssssssssssss s s sssssssssssssassssssss s s ssssn s 20
Application PerfOrmMancCe....... s sssssssssssss s sss s ss s sssssssssssssssssssssssss s 21
Application Portability ... 21
W07 00 U Tor: T 10 4 BT =T 1D 21
BT 00000 0y A N U 0 T 21
1] 0 22
= .- 22

Page 3

splunk>

Overview

The purpose of this guide is to provide guidance on building Splunk Add-Ons and Applications. The
recommendations provided within this document may not be appropriate for every environment. Therefore, all best
practices within this document should be evaluated in an isolated test environment prior to being implemented in
production.

Creating a Directory Structure for Your Application or Add-on

Splunk Applications and Add-ons are basically a file system directory containing a set of configurations for collecting
data and/or analyzing data. To get started on your Splunk application, create a directory in
$SPLUNK_HOME/etc/apps where $SPLUNK_HOME is one of the following by default:

Windows %ProgramFiles%\Splunk\etc\apps
*nix /opt/Splunk/etc/apps
Mac /Applications/Splunk/etc/apps

All configurations will go in this directory to make the application or add-on self-contained and portable.

Directory Naming Conventions for Your Application or Add-on

For applications (dashboards, forms, saved searches, alerts, etc.):

Vendor-app-product

Example: acme-app-widget

For add-ons (data collection mechanisms with no user interface):

TA_vendor-product

Example : TA_acme-widget

TA stands for Technology Add-on

Note: after uploading an application to Splunk Apps, the directory name cannot be changed. The actual name of the
application displayed on the Splunk start screen and on Splunk Apps is controlled by a file named app.conf and is
independent of the directory name mentioned above.

Page 4

splunk>

Getting Data Into Splunk

The first thing that needs to happen to create a Splunk Application is to get data into Splunk. There are various
methods to get data into Splunk including, but not limited to, the following:

* Reading log files on disk

e Sending data to Splunk over the network via TCP or UDP

e Pulling data from APls

e Sending scripted output to Splunk such as bash, PowerShell, batch, etc.

* Microsoft Windows perfmon, Event Logs, registry, WMI, etc.

These methods are covered in detail at the Splunk Docs site
http://docs.splunk.com/Documentation/Splunk/latest/Data/\WhatSplunkcanmonitor

Data can be local or remote to the Splunk instance.
Local Data

A local resource is a fixed resource that your Splunk Enterprise server has direct access to, meaning you are able to
access it - and whatever is contained within it - without having to attach, connect, or perform any other intermediate
action (such as authentication or mapping a network drive) in order to have that resource appear available to your
system. A Splunk instance can reach out to other remote systems or receive data from remote systems over the
network.

Remote Data

A remote resource is any resource where the above definition is not satisfied. Splunk Universal Forwarders can be
installed on remote systems to gather data locally and send the gathered data over the network to a central Splunk
instance.

Best Practices for Reading Existing Log Files

Existing log files are easily read using Splunk. Information about how to direct Splunk to monitor existing log files and
directories can be found here -> http://docs.splunk.com/Documentation/Splunk/latest/Data/Monitorfilesanddirectories

Page 5

splunk>

Best Practices for Logging Data to be consumed by Splunk

If you have control of how data is logged, the following best practices can help Splunk better recognize events and
fields with little effort:

» Start the log line event with a time stamp

* Use clear key-value pairs

* When using key-value pairs, leverage the Common Information Model
* Create events that humans can read

e Use unique identifiers

* Login text format

* Use developer-friendly formats

e Log more than just debugging events

* Use categories

* Keep multi-line events to a minimum

* Use JSON (Java Script Object Notation) format

More information about these best practices can be found here ->

http://dev.splunk.com/view/logging-best-practices/SP-CAAADP6

Page 6

splunk>

Best Practices for Event Breaking

For each of the inputs, at a minimum, ensure you set the following props.conf attributes. They help tremendously with
event breaking and timestamp recognition performance:

TIME_PREFIX, MAX_TIMESTAMP_LOOKAHEAD, TIME_FORMAT, LINE_BREAKER, SHOULD_LINEMERGE,
TRUNCATE, KV_MODE

Sample events:

2014-07-15 10:51:06.700 -0400 "GET
servicesNS/admin/launcher/search/typeahead?prefix=index%3D internal&count=50&
output mode=json&max time= HTTP/1.0" 200 73 - - - 1ms

2014-07-15 10:51:06.733 -0400 "GET
servicesNS/admin/launcher/search/typeahead?prefix=index%3D internal&count=50&
output mode=json&max time= HTTP/1.0" 200 73 - - - 2ms

2014-07-15 10:51:06.833 -0400 "GET
servicesNS/admin/launcher/search/typeahead?prefix=index%3D internal&count=50&
output mode=json&max time= HTTP/1.0" 200 73 - - - 1ms

Sample props.conf

[sourcetypeA]

TIME PREFIX = *

MAX TIMESTAMP LOOKAHEAD = 25

TIME FORMAT = $Y-%m-%d $H:%M:%S.%3N %z

LINE BREAKER = ([\r\n]+)\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}.\d{3}
SHOULD LINEMERGE = False

TRUNCATE = 5000

KV _MODE = None

ANNOTATE PUNCT = false

For each of the above settings, detailed descriptions can be found on the manual for props.conf but here's a brief
explanation:

e TIME_PREFIX: Leads Splunk to the exact location to start looking for a timestamp pattern. The more
precise this is, the faster the timestamp processing.

e MAX TIMESTAMP_LOOKAHEAD: Tells splunk how far after TIME_PREFIX the timestamp pattern extends.

e TIME_FORMAT: Tells splunk the exact format of the timestamp (instead of having Splunk to guess what it is
by iterating over *many* possible timeformats)

e LINE_BREAKER: Tells splunk how to break the stream into events. This setting requires a capture group
and the breaking point is immediately after it. Capture group content is tossed away. In this specific example
it reads: "break after one or more carriage returns or newlines followed by a pattern that looks like a
timestamp"

e SHOULD_LINEMERGE: Tells Splunk not to engage line merging (break on newlines and merge on
timestamps), which is known to be a huge resource hog, especially for multiline events. Instead, by defining
LINE_BREAKER we're telling it to break on a definite pattern.

e TRUNCATE: maximum line length (or event length) in bytes. This defaults to 10K. Its prudent to have
something non-default depending on expected event length. Super-long events tend to indicate a logging
system problem.

Page 7

splunk

* KV_MODE: Specify exactly what you want Splunk to engage at search time. If you do not have events in KV
pairs, or any other poly/semi/structured format, disable it.
* ANNOTATE_PUNCT: Unless you expect PUNCT to be used in your searches, disable its extraction as it

adds index-time overhead.

Page 8

splunk>

Scripted Input Best Practices

Scripted inputs allow you to gather data from sources where data does not exist on disk. Examples include calling
APIs or gathering in-memory data. Any script that the operating system can run, Splunk can use for scripted inputs.
Any output from the script to stdout (the screen by default) will end up in the Splunk index.

Do not hard code paths in scripts

When referencing file paths in the Splunk directory, use the special $SPLUNK_HOME environment variable. This
environment variable will be automatically expanded to the correct Splunk path based on the operating system on
which Splunk is running.

Example (Python):

os.path.join(os.environ["SPLUNK HOME"], 'etc', 'apps',APP NAME)

Example (PowerShell):
Join-Path -path (get-item env:\SPLUNK HOME) .value "Splunk\etc\apps"

Use Splunk Entity Class or position files as a placeholder

Oftentimes, you may be calling an API with a scripted or modular input. In order to only query a specific range of
values, use either the Splunk Entity Class or a position file to keep track of where the last run left off so that the next
run will pick up at this position.

Depending on where your input runs will dictate whether you should use the Splunk Entity class or use a position file.
For more detailed information, refer to the following blog post -> http://blogs.splunk.com/2014/09/22/pick-up-where-
you-left-off-in-scripted-and-modular-inputs/

For position files, avoid using files that start with a dot as operating systems usually treat these types of files as
special files.

Do use acme.pos

Do not use .pos

Page 9

splunk>

Use error trapping and logging

The following example demonstrates how to use the Python Logging Facility. Information logged with logging.error()
will end up in splunkd.log as well as a special “_internal” index that can used for troubleshooting.

Example with Python Logging Module:
import logging
try:
Some code that may fail like opening a file
except IOError, err:

logging.error ('$s - ERROR - File may not exist %s\n' %
(time.strftime ("$Y-%m-%d SH:%M:%S"), str(err)))

pass

Using stderr

Just like anything written to stdout will end up in the Splunk index, anything written to stderr from a scripted input will
behave like logging.error() from above.

Example (Python):
try:

Some code that may fail like opening a file
except IOError, err:

sys.stderr.write('%$s - ERROR - File may not exist %s\n' %
(time.strftime ("$Y-%m-%d S$H:%M:%S"), str(err)))

pass

Example (PowerShell):
try
{

Some code that may fail like opening a file
catch

Write-Error ('{0:MM/dd/yyyy HH:mm:ss} GMT - {1} {2}' -f (Get-
Date) .ToUniversalTime (), "Could not create position file: ",
$.Exception.Message)

exit

Page 10

splunk>

Test Scripts using Splunk CMD

To see the output of a script as if it was run by the Splunk system, use the following:

Mac:

/Applications/Splunk/bin/splunk cmd python
/Applications/Splunk/etc/apps/<your app>/bin/<your script>

Windows:

C:\Program Files\Splunk\bin\splunk.exe cmd C:\Program
Files\Splunk\etc\apps\<your app>\bin\<your script>

More useful command line tools to use with Splunk can be found here ->
http://docs.splunk.com/Documentation/Splunk/latest/Troubleshooting/CommandlinetoolsforusewithSupport

Use configuration files to store user preferences

Configuration files store specific settings that will vary for different environments. Examples include REST endpoints,
API levels, or any specific setting. Configuration files are stored in either of the following locations and cascade:

$SPLUNK HOME/etc/apps/<your app>/default

$SPLUNK HOME/etc/apps/<your app>/local

For example, suppose there is a configuration file called acme.conf in both the default and local directories. Settings
from the local directory will override settings in the default directory.

Use Splunk methods to read cascaded settings

The Splunk cli_common library contains methods that will read combined settings from configuration files.

Example (Python):

import splunk.clilib.cli common

def init (self,obj):

Page 11

splunk>

self.object = obj

self.settings = splunk.clilib.cli common.getConfStanza ("acme", "default")

Use script methods to construct file paths

Example (Python):
abs file path = os.path.join(script dir, rel path)

Example (PowerShell):

SpositionFile = Join-Path S$positionFilePath SpositionFileName

Modular Inputs

Modular Inputs allows you to extend the Splunk Enterprise framework to define a custom input capability. Your
custom input definitions are treated as if they were part of Splunk Enterprise native inputs. The inputs appear
automatically on the Settings > Data Inputs page. From a Splunk Web perspective, your users interactively create
and update your custom inputs using Settings, just as they do for Splunk Enterprise native inputs.

Modular Inputs vs. Scripted Inputs

Modular inputs can be used just about anywhere scripted inputs are used. Scripted inputs are quick and easy, but
may not be the easiest for an end user. Modular inputs require more upfront work, but are easier for end user
interaction.

For more information on modular inputs as well as comparisons between scripted inputs and modular inputs, follow
this link -> http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/ModInputsintro

Page 12

splunk>

Analyzing Data with Splunk

Once data is in a Splunk index, the data can be analyzed via searches, reports, and visualizations.

Dashboard and Form Best Practices

There are multiple options for building Splunk dashboards — Simple XML, Advanced XML, and the Splunk Web
Framework. Most dashboard needs are covered in Simple XML; however, if you require advanced visualizations that
are outside the scope of the visualizations included with Simple XML, the Splunk Web Framework allows you to use
any HTML/JavaScript libraries alongside Splunk data.

More information on Simple XML can be found here ->
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference

More information on the Splunk Web Framework -> http://dev.splunk.com/view/web-framework/SP-CAAAERG

Splunk 6.x Dashboard Examples

The Splunk 6.x Dashboards Examples app provides numerous examples of how to visualize your data in Simple XML
format. The app can be downloaded here -> http://apps.splunk.com/app/1603/

Search Best Practices

The Splunk Search Processing Language (SPL) is the heart of all Splunk analytics. A firm understanding of the SPL
is critical to creating good analytics. Several examples of more common search commands can be found on this
quick start guide -> http://dev.splunk.com/web_assets/developers/pdf/splunk_reference.pdf

Parameterize index names

Parameterize index names so that they can be changed later without modifying existing searches. This can be done
as a macro or eventtype.

marcros.conf example:
[acme index]

definition = index=acme

Example search using macro:
‘acme _index® sourcetype=widiget | stats count

Page 13

splunk>

eventtypes.conf example:
[acme eventtype]

search = index=acme sourcetype="widget"

Example search using eventtype:
eventtype=acme eventtype | stats count

Use scheduled saved searches to build lookup files

By building lookup files using a scheduled saved search, lookup files will be automatically replicated in a distributed
environment.

Example (from saved searches.conf):
[Lookup - WinHosts]

action.email.inline =1

alert.suppress = 0

alert.track = 0

auto summarize.dispatch.earliest time = -1d@h
cron_schedule = 0 0 * * *

description = Updates the winHosts.csv lookup file
dispatch.earliest time = -26hCh
dispatch.latest time = now

enableSched = 1

run_on_startup = true

search = “acme index’ sourcetype=WinHostMon | stats latest(time) AS time
latest (OS) AS OS latest (Architecture) AS Architecture latest (Version) AS
Version latest (BuildNumber) AS BuildNumber latest (ServicePack) AS ServicePack
latest (LastBootUpTime) AS LastBootUpTime latest (TotalPhysicalMemoryKB) AS
TotalPhysicalMemoryKB latest (TotalVirtualMemoryKB) as TotalVirtualMemoryKB
latest (NumberOfCores) AS NumberOfCores by host | inputlookup append=T
winHosts.csv | sort time | stats latest(time) AS time latest (0S) AS OS
latest (Architecture) AS Architecture latest (Version) AS Version

latest (BuildNumber) AS BuildNumber latest (ServicePack) AS ServicePack
latest (LastBootUpTime) AS LastBootUpTime latest (TotalPhysicalMemoryKB) AS
TotalPhysicalMemoryKB latest (TotalVirtualMemoryKB) as TotalVirtualMemoryKB
latest (NumberOfCores) AS NumberOfCores by host | outputlookup winHosts.csv

Page 14

splunk>

Use TERM() to Search for IP Addresses

When you search for a term that contains minor segmenters, Splunk defaults to treating it as a phrase: It searches for
the conjunction of the subterms (the terms between minor breaks) and post-filters the results. For example, when you
search for the IP address 127.0.0.1, Splunk searches for: 127 AND 0 AND 1

If you search for TERM(127.0.0.1), Splunk treats the IP address as a single term to match in your raw data.

Knowledge Object Scope

Knowledge Object definition -> http://docs.splunk.com/Splexicon:Knowledgeobject

Knowledge Objects can be scoped to individuals, apps, or global. The scope of the knowledge objects is controlled
via default.meta or local.meta. Your app should not ship with a local.meta file, so all scoping should be defined in
default.meta.

It is a best practice to scope all knowledge objects to the application only. However, if you are creating a TA that is
not visible and/or will be used by multiple other applications, the scope of the object should be set to Global.

Page 15

splunk>

Packaging Your App for Distribution

After you build your Splunk application, you can share your extensions to Splunk Enterprise on Splunk Apps and
make them available to everyone in the Splunk community or distribute them directly to your costumers.

Detailed instructions on the process for packaging your application for redistribution can be found here ->

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/PackageApp

Important Information Regarding app.conf

The name of your application, version, App ID, etc. is stored in a file called app.conf. The value for id in app.conf
must match the folder name in which your apps lives in $SPLUNK_HOME/etc/apps. Once this id is set and uploaded
to Splunk Apps, the id cannot be changed unless you create a separate application to upload.

Application Naming Conventions

Certain naming conventions should be followed. What you name your application or add-on is not impacted by how
you named your directory structure.

A detailed list of naming convention parameters can be found here ->

http://docs.splunk.com/Documentation/Splunkbase/latest/Splunkbase/Namingguidelines

Page 16

splunk>

Definitions

Splunk Instance — the server(s) where the Splunk software is installed. This can be a single server consisting of the
Splunk Indexer, Search Head, and Deployment Server. Or, this can be a collection of servers in a distributed
deployment. Generally, a Splunk Forwarder is not considered to be part of a Splunk Instance.

Splunk Forwarder — a piece of software running on a remote system that collects and forwards data to a Splunk

Instance.

Technology Add-on (TA) — a set of Splunk configurations, scripts, modular inputs, etc. The purpose of a TA is to

collect data and/or add knowledge to the collected data.

Revision History

1.0 Initial Document Business Development July 15, 2014

1.1 Added Do’s and Don’ts table Business Development August 8, 2014

1.2 Added Knowledge Object Scope Business Development September 6, 2014

1.3 Added Appendix B — Application/Add-on | Business Development October 2, 2014
checklist

Page 17

splunk

Application
Do

Use setup.xml or a django form to allow the end user to
configure the app

Don’t

Make users manually enter information such as API
credentials into configuration files.

Encrypt user input passwords.

http://blogs.splunk.com/2011/03/15/storing-encrypted-
credentials/

Store clear text passwords in .conf files.

Parameterize indexes so that they can be easily changed

Hard code indexes in your searches

Use the CIM add-on
http://docs.splunk.com/Documentation/CIM/latest/User/
Overview

Place all .conf files in default

$SPLUNK_HOME/etc/apps/<your_app>/default

Leave any content in

$SPLUNK_HOME/etc/apps/<your_app>/local

Set default permissions in:

$SPLUNK_HOME/etc/apps/<your_app>/metadata/default.
meta

Have a local.meta file located in:

$SPLUNK_HOME/etc/apps/<your_app>/metadata

Data Collection
Do

Support multiple platforms.

Don’t

Code for a single OS.

Use scripting language utilities such as os.path.join() and
the special environment variable $SPLUNK_HOME to
construct paths in scripts.

Hard code script paths.

Use key=value pairs in writing to log files (if you have
control of the logging output).

Use name abbreviations.

Throttle how much data is collected at one time from an
API.

Overwhelm a system by pulling exorbitant amounts of
data at one time from an API.

Use logging and error trapping in scripts.

Page 18

splunk

Packaging Applications
Do

Follow the guidelines found at
http://docs.splunk.com/Documentation/Splunk/latest/
AdvancedDev/PackageApp

Don’t

Leave any hidden files in the app such as Mac’s ._ files.

Include a screen shot of your application in the correct
location.

Let the user choose which inputs are enabled for their
environment.

Enable all inputs by default if not necessary.

Use a build automation tool such as Apache Ant if
necessary to ensure a clean build/package.

Leave anything in:
$SPLUNK_HOME/etc/apps/<app>/local directory
$SPLUNK_HOME/etc/apps/<app>/metadata/local.meta

Ensure the appropriate settings are set in app.conf

Document your app with a README.txt file

Test your application on a clean system

Page 19

splunk

Appendix B — Application/Add-on Checklist

Application Setup Instructions

[0 README located in the root directory of your application with basic instructions.
[0 Detailed instructions located on a dashboard within the application.
O Instructions do not direct the user to store clear text passwords anywhere.
[0 Setup screen (optional) that prompts the user for setup parameters.
O Setup mechanism encrypts passwords.

Application Packaging

[0 APP.CONF specifies:

[id - this cannot be changed once created.

[J version - this field can contain trailing text such as “beta”.

[0 description
The “local” directory in the application is either empty or does not exist.
Remove metadata/local.meta
Ensure metadata/default.meta exports and permissions are set correctly.
Remove any files from the lookups directory that are not static. For instance, some
scheduled saved searches generate files in this directory that are specific to the
environment.
No hidden files contained in the application directory structure.
All XML files are valid.

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/AdvancedSchemas#Validation

OoOoono

Ooad

Page 20

splunk

Application Performance

O Intervals on inputs.conf reviewed. For example, inventory data should be polled less
frequently than performance data.
Scripted or modular inputs are verified to not have a negative impact on the host
system.
Amount of data requested from 3" party APIs is throttled (if applicable). For example,
requesting 1 million records via REST may be bad.
Saved searches are optimized. For example, dispatch.earliest_time and
dispatch.latest_time should be set by default in savedsearches.conf.
Measured resources when running the application:

O Load average

O %cpu

O Memory usage

O

O Od

Application Portability

[0 Searches do not contain hard coded index names.
[0 Application conforms to the Splunk Common Information Model (CIM) (optional).
[0 Eventgen.conf created (optional).

[0 Eventgen sample data stored in the samples directory.

[0 Eventgen data anonymized.

Application Security

[0 Application does not open outgoing connections.

[0 Application does not use IFRAME.

O Application and/or Add-ons do not have pre-compiled Python code.
[0 Application does not contain executable files.

Technology Add-Ons

O Technology add-ons are stored in your application folder under appserver/addon:s.

[0 Scripted or modular inputs are verified to not have a negative impact on the host
system.

0 No hard coded paths in scripted or modular inputs.

O Logging mechanism used in data collection.

[0 Error trapping used in data collection.

Page 21

splunk

Testing

[0 Tested Application on a clean install of Splunk to ensure everything is self-contained.
[0 Tested Application on Splunk running in *nix

[0 Tested Application on Splunk running in Windows®

[0 Tested Add-ons on multiple platforms (optional).

[0 Application tested with multiple Splunk account roles.

[0 Application tested on multiple versions of Splunk (optional).

[0 Open Application in non-Flash browser.

[0 open Application in browsers supported by Splunk.

Legal

[0 No use of Splunk in trademark infringing way.
[0 Developer's agreement to "Developer Distribution License"
0 App has a valid EULA

Page 22

